YA UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

CSE 3908, 2024 Winter
Building Academic Success Through Bottom-Up Computing

Study Environment &
Boolean Logic

Study Environment Discussion, Boolean Logic and Functions,

Foundational Logic Gates, Hardware Descriptive Languages

YA/ UNIVERSITY of WASHINGTON

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Checking in on Project 1

% Remember to double-check your submission on GitLab

= Navigate to GitLab, open tags, and verify that the associated
commit includes your expected changes

<% How has Project 1 been coming along?

<+ What questions do you have about Project 1°?

YA/ UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic

Lecture Outline

< Study Environment Discussion

<+ Boolean Logic and Functions
= Boolean Expressions, Circuit Diagrams, Truth Tables
= Boolean Function Synthesis Strategy

<% Hardware Descriptive Languages (HDL)
= HDL Syntax, And Gate Example

< Foundational Logic Gates
= Nand, Not, And, Or, Xor, Mux, DMux Gates
= Example of Implementing an Xor Gate in HDL

CSE 390B, 2024 Winter

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Study Environment Discussion

In groups of 3—4, discuss the following questions about study
environments:

<% On a typical day, what does your study environment look
like? Be specific!

<+ What contributes to an effective study environment? Why?
= What changes can you make to introduce some of these factors?

<+ What factors hinder a study environment from being

effective? Why?
= What changes can you make to remove some of these factors?

YA/ UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic

Lecture Outline

< Study Environment Discussion

< Boolean Logic and Functions
= Boolean Expressions, Circuit Diagrams, Truth Tables
= Boolean Function Synthesis Strategy

<% Hardware Descriptive Languages (HDL)
= HDL Syntax, And Gate Example

< Foundational Logic Gates

= Nand, Not, And, Or, Xor, Mux, DMux Gates
= Example of Implementing an Xor Gate in HDL

CSE 390B, 2024 Winter

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Boolean Values

< A binary choice: True or False

<% Also known as a “low” signal (false, “off,” or 0) and a
“high” signal (true, “on”, or 1)

l(off” (lO n”
False True
0 1

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Boolean Operations

< Use logical operations to combine Boolean values

= Truth table: A table that lists every possible set of inputs and the
corresponding output of the operation
= QOperations correspond to physical hardware gates

<% Examples:

A | B F A | B F
0 0 0 0o + 0 0 A F
R 0 R 1 0 1
1 0 0 1 0 1 1 0
1 1 1 1 1 1

F=NOTA

F=AANDB F=AO0ORB

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Boolean Functions

<% Combinations of Boolean inputs resulting in single output

<% Multiple ways to specify a Boolean function:
= Boolean expression: F = (A AND B) OR (NOT(A) AND C)

AlOT—¢

= Circuit diagram with logic gates: AND

: : 1 (0)
= Truth table: i i NOT F
; ; —{>0—

AND

R m R, mr|lolocolo|lo| >
el el =l = N K= =N -]
R lolR,r|lolR,r|lol—,r|lo|lO
el el =l =Rl =R = =N R’

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Boolean Expression - Truth Table

<+ We can build a truth table from an expression
= Evaluate the Boolean expression on all possible inputs

F(A, B, C) = (A AND B) OR (NOT(A) AND C)

4

R R mr]Rr|lolo|lolo| >
==l R|lR|lolOo| &
= | O R | O R|OIR]|O]O

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Boolean Expression - Truth Table

<+ We can build a truth table from an expression
= Evaluate the Boolean expression on all possible inputs

F(A, B, C) = (A AND B) OR (NOT(A) AND C)

4

Rlmr[r]Rr|lolo|lo|o]| >
el =R =R N K= =N -]
RlolRr|lolrRr|lol~r|o]|la
R |lmr|lolo|lRr|lolRr|o|m

10

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Boolean Expression € Truth Table

% But can we do it in reverse?

F(A, B, C) = (A AND B) OR (NOT(A) AND C)

T >

Rlmr[r]Rr|lolo|lo|o]| >
el =R =R N K= =N -]
RlolRr|lolrRr|lol~r|o]|la
R |lmr|lolo|lRr|lolRr|o|m

11

YA/ UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic

Boolean Expression € Truth Table

<% We can describe a single row with AND and NOT

A

B
0
0
1
1]
0
0
1
1

N o Bl =N R = el e
= O (=R | O R[OOI =[O0
= = O[O |k | O |-k | O | M

CSE 390B, 2024 Winter

12

YA/ UNIVERSITY of WASHINGTON

Boolean Expression € Truth Table

<% We can describe a single row with AND and NOT

AiBiC|F
0:0:0]0
0:0 i1

0:1:01|0
01 1)1
1:0:0]0
1,010
1:1:0]1
101 1|1

Lecture 2: Study Environment & Boolean Logic

CSE 390B, 2024 Winter

13

YA/ UNIVERSITY of WASHINGTON

Boolean Expression €& Truth Table

<% We can describe a single row with AND and NOT

AiBiC|F
0:0:0]0
0:0 i1

0:1:01|0
01 1)1
1:0:0]0
1,010
1:1:0]1
101 1|1

Lecture 2: Study Environment & Boolean Logic

NOT(A) AND B AND C

CSE 390B, 2024 Winter

14

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Boolean Expression €& Truth Table

<% We can describe a single row with AND and NOT

AiBiC|F

0:0:0]0

0:0 i1

0:1:01|0

011 1] 1| NOT(A)ANDBANDC
1:0:0]0

1,010

1{1:0| 1| AANDBANDNOTC
101 1|1

15

YA/ UNIVERSITY of WASHINGTON

Boolean Expression €& Truth Table

<% We can describe a single row with AND and NOT

AiBiC|F
0:0:0]0
0:0 i1

0:1:01|0
01 1)1
1:0:0]0
1,010
1:1:0]1
101 1|1

Lecture 2: Study Environment & Boolean Logic

NOT(A) AND B AND C

A AND BAND NOTC
A AND B ANDC

CSE 390B, 2024 Winter

16

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Boolean Expression € Truth Table

<+ Then, we can combine the rows using OR operations

AiBi|C|F
0:0:0]0
0:0 i1
0{11{0]0
0:1:{1]| 1| NOT(A)ANDBANDC
1:0:0]0
1,010
1{1:0| 1| AANDBANDNOTC
1:1:1|1| AANDBANDC
F = OR NOT(A) AND B AND C OR

A AND BAND NOTCOR AANDBANDC

17

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Boolean Expression € Truth Table

< But can we do it in reverse?
= Yes, we can! The strategy we used is Boolean Function Synthesis

F(A, B, C) = (A AND B) OR (NOT(A) AND C)
/

Rlmr[r]Rr|lolo|lo|o]| >
el =R =R N K= =N -]
RlolRr|lolrRr|lol~r|o]|la
R |lmr|lolo|lRr|lolRr|o|m

18

W UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

< Lecture 2: Study Environment & Boolean Logic {o}

When poll is active PollEv.com Send cse390b to
respond at [cse390b 22333

Which of the following statements is
FALSE?

SEE MORE 2

0ol [

YA/ UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic

Lecture Outline

< Study Environment Discussion

<+ Boolean Logic and Functions
= Boolean Expressions, Circuit Diagrams, Truth Tables
= Boolean Function Synthesis Strategy

< Hardware Descriptive Languages (HDL)
= HDL Syntax, And Gate Example

< Foundational Logic Gates
= Nand, Not, And, Or, Xor, Mux, DMux Gates
= Example of Implementing an Xor Gate in HDL

CSE 390B, 2024 Winter

20

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Hardware Design Language (HDL)

<% HDL is a programming language to specify hardware

components and how they’re connected
= Another way of describing a Boolean function!

<+ Many Hardware Design Languages are used today
= E.g., VHDL, Verilog, SystemVerilog
* |n this course, we’ll use a simple HDL language called “HDL”

< Unlike Java, HDL is a declarative language. This means the

following:
= The order of statements (lines of code) doesn’t matter
= We are describing a physical system

21

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Hardware Design Language (HDL)

% Format of an HDL file

= File comment describes expected behavior
= IN names chip inputs, OUT names chip outputs
= PARTS specify the components (i.e., other gates) that implement

the chip

/**
* And gate:
* out = 1 only if both a and b are 1
*/
CHIP And {
IN a, b;
OUT out;

PARTS:
// Put your code here:

}

22

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Reusing Components

<% You can (and should!) use chips you have already
implemented to implement subsequent chips

<+ We give you one gate, Nand, to start out with

= |mplication: The entire computer you will be building will be use
Nand gates as its foundation

% We also provide you with some chips you can use without
implementing

23

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

HDL Component Example: AND

<% The chip specification tells us the name of the input and

output wires u1p ang |

IN a, b;
OUT out;

<% Goal: Implement wl AND w2

= HDL Syntax for using (being a client of the And gate):
And (a=wl, b=w2, out=w3);
= Equivalent circuit diagram: wl [O]

out
W2 @ 2 24

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Multi-bit Buses in HDL

< It can be useful to manipulate groups of wires
= Called a “bus” of wires

< HDL provides array like syntax for manipulating buses
= And4 chip example:

[*%
* Bit-wise And of two 4-bit inputs
*/
CHIP And4 {
IN a[4], b[4];
OUT out[4];

PARTS:

And (a=a[0], b=b[0], out=out[0]);
And (a=a[l], b=b[l], out=out[1l]);
And (a=al[2], b=b[2], out=out[2]);
And (a=a[3], b=b[3], out=out[3]);

25

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

HDL Resources

<+ HDL will feel unfamiliar at first, and that’s okay

<% Resources for helping you navigate HDL linked under the
Resources page on the course website

HDL Survival guide

Appendix A (HDL Spec)

Chip Set Overview (to help you remember the inputs/outputs for
various chips)

Chapter readings

26

YA/ UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic

Lecture Outline

< Study Environment Discussion

<+ Boolean Logic and Functions
= Boolean Expressions, Circuit Diagrams, Truth Tables
= Boolean Function Synthesis Strategy

<% Hardware Descriptive Languages (HDL)
= HDL Syntax, And Gate Example

<+ Foundational Logic Gates
= Nand, Not, And, Or, Xor, Mux, DMux Gates
= Example of Implementing an Xor Gate in HDL

CSE 390B, 2024 Winter

27

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

The Foundational Building Block

< It all starts with the NAND gate

% NAND is short for “Not And”
= The same output as the AND gate, but every output bit is negated

(flipped)
A B F A B F
0 0 0 0 0 1
0 1 0 0 1 1
1 0 0 1 0 1
1 1 1 1 1 0

F=AANDB F=ANANDB

28

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Building Gates From Nand

*

Recall the Boolean Function Synthesis strategy

= We saw how we can represent any truth table in terms of three
gates: Not, And, Or

< First, we can represent Not directly from Nand
" Not a = a Nand a

<% Then, we can represent And in terms of Not and Nand
= a And b = Not(a Nand b)

% Represent Or in terms of Not and And
= Apply De Morgan’s Law
" a Or b = Not(Not(a) And Not (b)) [De Morgan’s Law]

29

Making Decisions in Hardware

<% We write if/else statements in Java with the

understanding that only one of the branches will run
= For example, in the following code, we expect to compute one
of a & b or a | b (notboth)

if (¢ == 0) {
out = a & b;

} else {
out = a | b;

}

< In hardware, the entire circuit is always executing
= We can’t “turn off” a part of a circuit based on a condition
= |nstead, we create circuits for different conditions and choose
which output based on a condition instead

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

30

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Decisions in Hardware: Mux Gate
% We can use a Multiplexer (Mux) gateto =7 .aux -

choose which singular input to output b —] 1
= Takes three inputs: a, b, and sel

" [fsel == 0,thenout = a =
= QOtherwise, out = Db . .

a ' b i sel F

0 0 ! 0 0

< Mux Gate Truth Table: o | o0 | 1 0

0 1 0 0

o 1 i 1 1

1 1 0 i 0 1

1 i 0 i 1 0

1 1 0 1

11 i1 1

31

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Decisions in Hardware: DMux Gate

<+ A Demultiplexer (DMux) gate passes one input

to one of two outputs and 0O to the rest

= Takes two inputs: in and sel in ijxﬁa
* Ifsel == 0O,thena = in and b = 0 F—0b
= Otherwise, a = 0 and b = 1in)

% DMux Gate Truth Table: T a b
0 1 0 0 0
0 1 0 0
1 0 1 0
1 1 0 1

32

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Implementing an Xor Gate: Overview

<% Let’s walk through an example of building a gate that you
will work on in Project 2, the Xor gate

% Together, we’ll implement the Xor gate

/**
* Xor gate:
* out = not(a == b)
*/
CHIP Xor {
IN a, b;
OUT out;

PARTS:
// Put your code here:

}

33

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Implementing an Xor Gate: Overview

% Plan of action:

= Step 1: Create the logic operation’s truth table
= Step 2: Use truth table to generate a Boolean function using

strategies we’ve learned, such as the Boolean Function Synthesis
= Step 3: Convert Boolean function to HDL

/**
* Xor gate:
* out = not(a == b)
*/
CHIP Xor {
IN a, b;
OUT out;

PARTS:
// Put your code here:

34

YA/ UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic

Implementing an Xor Gate: Step 1

< Step 1: Create the truth table for Xor
" |Interpret the specification: F = NOT (A == B)

== o | o
= o= | O | 5

F=AXORB

CSE 390B, 2024 Winter

35

YA/ UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic

Implementing an Xor Gate: Step 1

< Step 1: Create the truth table for Xor

" |Interpret the specification: F = NOT (A == B)
A § B F
o i 0 0
o i 1 1
10 1
11 0
F = AXORB

CSE 390B, 2024 Winter

36

YA/ UNIVERSITY of WASHINGTON

CSE 390B, 2024 Winter

Implementing an Xor Gate: Step 2

Lecture 2: Study Environment & Boolean Logic

< Step 2: Use truth table to generate a Boolean function
= Let’s use the Boolean Function Synthesis strategy from the

reading

= Row 2=NOT(A) AND B

A B F
0 0 0
0 1 1
1 0 1
1 1 0

F=AXORB

(Row 1)
(Row 2)
(Row 3)

(Row 4)

37

YA/ UNIVERSITY of WASHINGTON

Implementing an Xor Gate: Step 2

Lecture 2: Study Environment & Boolean Logic

CSE 390B, 2024 Winter

< Step 2: Use truth table to generate a Boolean function
Let’s use the Boolean Function Synthesis strategy from the

reading
Row 2 =NOT(A) ANDB
Row 3 = A AND NOT(B)

A B F
0 0 0
0 1 1
R 1
11 0

F=AXORB

(Row 1)
(Row 2)
(Row 3)

(Row 4)

38

YA/ UNIVERSITY of WASHINGTON

Implementing an Xor Gate: Step 2

Lecture 2: Study Environment & Boolean Logic

CSE 390B, 2024 Winter

< Step 2: Use truth table to generate a Boolean function
= Let’s use the Boolean Function Synthesis strategy from the

reading
= Row 2 =NOT(A) ANDB

= Row 3 =AAND NOT(B)
= F=7?

== | ol o | >

B
0
1
0
1

O | = | = | o | ™

F=AXORB

(Row 1)
(Row 2)
(Row 3)

(Row 4)

39

YA/ UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic

< Lecture 2: Study Environment & Boolean Logic

When poll is active respond at PollEv.com/cse390b

What is the expression from using

Boolean function synthesis on F = A XOR

B?

SEE MORE _-

0ol

CSE 390B, 2024 Winter

70

YA/ UNIVERSITY of WASHINGTON

Implementing an Xor gate: Step 2

Lecture 2: Study Environment & Boolean Logic

CSE 390B, 2024 Winter

< Step 2: Use truth table to generate a Boolean function

Let’s use the Boolean function synthesis strategy from the reading
Row 2 =NOT(A) ANDB
Row 3 =A AND NOT(B)

F =Row 2 ORRow 3

= (NOT(A) AND B) OR (A AND NOT(B))

A
0
0
1
1

B
0
1
0
1

O | = | = | o | ™

F=AXORB

(Row 1)
(Row 2)
(Row 3)

(Row 4)

41

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Implementing an Xor gate: Step 3

<+ Now that we have a Boolean expression, we can
implement the Xor gate in HDL

<% Optionally, it can help to express the Boolean expression
as a circuit diagram

A XOR B = (NOT(A) AND B) OR (A AND NOT(B))

42

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Implementing an Xor gate: Step 3

< Step 3: Convert Boolean function to HDL syntax
= AXORB = (NOT(A) AND B) OR (A AND NOT(B))
= Assumes Not, And, and Or are already implemented
= Note the use of intermediary wires: nota, notb, x,and y

CHIP Xor {
IN a, b;
OUT out;

PARTS:
Not (in=a, out=nota); NOT AND
Not (in=b, out=notb) ; I_DO— b ©)out
And (a=a, b=notb, out=x); b|®@
And (a=nota, b=b, out=y); NOT AND

DO

Or (a=x, b=y, out=out);

43

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Project 2 Overview

<+ Metacognitive Component: Study Skills Inventory
= Reflect on your academic behaviors, strategies, and practices
= You will be graded on completing the form, not your responses
= This activity is for your own benefit, and the more honest you are,
the more beneficial it will be

<% Technical Component: GitLab Setup
= Will help prepare you for future CSE 390B projects

< Estimated time to complete: 6—8 hours

< Project 2 released, due next Friday (1/12) at 11:59pm

44

YW UNIVERSITY of WASHINGTON Lecture 2: Study Environment & Boolean Logic CSE 390B, 2024 Winter

Lecture 2 Reminders
< Project 1 due tonight (1/5) at 11:59pm

< Project 2: Study Skills Inventory & Boolean Logic released
today, due next Friday (1/12) at 11:59pm

% Eric has office hours after class on Zoom (see Ed
discussion board for Zoom link)

< First Student-TA meetings starting next week
= Your TA will be in contact with you about the first meeting

45

